asklyphe/lyphedb/src/dbimpl/mod.rs

321 lines
No EOL
10 KiB
Rust

use crate::config::LypheDBConfig;
use log::*;
use lyphedb::PropagationStrategy;
use once_cell::sync::Lazy;
use std::borrow::Cow;
use std::collections::BTreeMap;
use std::path::PathBuf;
use std::sync::Arc;
use std::sync::atomic::{AtomicU64, Ordering};
use percent_encoding::{percent_decode_str, percent_encode, AsciiSet, CONTROLS};
use tokio::sync::RwLock;
pub const NOT_ALLOWED_ASCII: AsciiSet = CONTROLS.add(b' ').add(b'/').add(b'.').add(b'\\');
pub type LDBCache = BTreeMap<Arc<Vec<u8>>, Arc<Vec<u8>>>;
/// Reads will read from this cache
pub static PRIMARY_CACHE: Lazy<RwLock<LDBCache>> =
Lazy::new(|| RwLock::new(BTreeMap::new()));
/// Writes will be written to this cache, and then depending on the propagation method, the
/// Primary cache will be set to a copy
pub static SECONDARY_CACHE: Lazy<RwLock<LDBCache>> =
Lazy::new(|| RwLock::new(BTreeMap::new()));
/// how often are keys accessed? this will influence the garbage collector
pub static KEY_ACCESS_COUNTER: Lazy<RwLock<BTreeMap<Arc<Vec<u8>>, AtomicU64>>> =
Lazy::new(|| RwLock::new(BTreeMap::new()));
pub fn key_to_path(config: &LypheDBConfig, key: &[u8]) -> PathBuf {
let mut path = PathBuf::new();
path.push(&config.master);
let mut fnbuf = Vec::new();
for (i, byte) in key.iter().enumerate() {
if *byte == b'/' {
let encoded = percent_encode(&fnbuf, &NOT_ALLOWED_ASCII).to_string();
path.push(encoded);
fnbuf.clear();
} else {
fnbuf.push(*byte);
}
}
if !fnbuf.is_empty() {
let encoded = percent_encode(&fnbuf, &NOT_ALLOWED_ASCII).to_string();
path.push(encoded);
fnbuf.clear();
}
path.push(".self");
path
}
#[derive(Debug)]
pub enum OperationError {
KeyCannotBeEmpty,
FilesystemPermissionError,
BadFilesystemEntry,
}
pub async fn set_key_disk(
config: &LypheDBConfig,
key: &[u8],
value: &[u8],
) -> Result<(), OperationError> {
if key.is_empty() {
return Err(OperationError::KeyCannotBeEmpty);
}
let path = key_to_path(config, key);
let directory = path.parent().ok_or(OperationError::KeyCannotBeEmpty)?;
if let Ok(directory_exists) = directory.try_exists() {
if !directory_exists {
std::fs::create_dir_all(directory).map_err(|e| {
warn!("couldn't create directory: {:?}", e);
OperationError::FilesystemPermissionError
})?;
}
} else {
return Err(OperationError::FilesystemPermissionError);
}
std::fs::write(path, value).map_err(|e| {
warn!("couldn't write file: {:?}", e);
OperationError::FilesystemPermissionError
})?;
Ok(())
}
pub async fn delete_key_disk(
config: &LypheDBConfig,
key: &[u8],
) -> Result<(), OperationError> {
if key.is_empty() {
return Err(OperationError::KeyCannotBeEmpty);
}
let path = key_to_path(config, key);
if let Ok(exists) = path.try_exists() {
if !exists {
return Ok(());
}
}
std::fs::remove_file(path).map_err(|e| {
warn!("couldn't remove file: {:?}", e);
OperationError::FilesystemPermissionError
})
}
pub async fn get_key_disk(
config: &LypheDBConfig,
key: &[u8],
) -> Result<Option<Vec<u8>>, OperationError> {
if key.is_empty() {
return Err(OperationError::KeyCannotBeEmpty);
}
let path = key_to_path(config, key);
if let Ok(exists) = path.try_exists() {
if !exists {
return Ok(None);
}
}
let data = std::fs::read(path).map_err(|e| {
warn!("couldn't read file: {:?}", e);
OperationError::FilesystemPermissionError
})?;
Ok(Some(data))
}
/// this function allows empty keys, so you can get all keys under root by doing
/// get_keys_under_keydir_disk(..., b"")
pub async fn get_keys_under_keydir_disk(
config: &LypheDBConfig,
keydir: &[u8],
) -> Result<Vec<Vec<u8>>, OperationError> {
let path = key_to_path(config, keydir);
let path = path.parent().expect("bad master");
let mut keys = Vec::new();
for entry in std::fs::read_dir(path).map_err(|e| {
warn!("couldn't read directory: {:?}", e);
OperationError::FilesystemPermissionError
})? {
let entry = entry.map_err(|e| {
warn!("couldn't read directory entry: {:?}", e);
OperationError::FilesystemPermissionError
})?;
let path = entry.path();
let filename = path
.to_str()
.ok_or(OperationError::FilesystemPermissionError)?;
if filename.ends_with(".self") {
// this is a value file, ignore
continue;
}
let filename = filename.trim_start_matches(&config.master);
let key = percent_decode_str(filename).collect();
keys.push(key);
}
Ok(keys)
}
pub async fn set_key(
config: LypheDBConfig,
key: &[u8],
value: &[u8],
strat: &PropagationStrategy,
) -> Result<(), OperationError> {
let k1 = Arc::new(key.to_vec());
let v1 = Arc::new(value.to_vec());
let disk_task = {
let k1 = k1.clone();
let v1 = v1.clone();
tokio::spawn(async move { set_key_disk(&config, &k1, &v1).await })
};
let prop_task = match strat {
PropagationStrategy::Immediate => {
let k1 = k1.clone();
let v1 = v1.clone();
tokio::spawn(async move {
let mut secondary_cache = SECONDARY_CACHE.write().await;
secondary_cache.insert(k1, v1);
let mut primary_cache = PRIMARY_CACHE.write().await;
*primary_cache = secondary_cache.clone();
})
}
PropagationStrategy::Timeout => {
let k1 = k1.clone();
let v1 = v1.clone();
tokio::spawn(async move {
tokio::spawn(async move {
{
let mut secondary_cache = SECONDARY_CACHE.write().await;
secondary_cache.insert(k1, v1);
}
tokio::spawn(async move {
let start = std::time::Instant::now();
loop {
if start.elapsed().as_secs() > 60 {
break;
}
let pc = PRIMARY_CACHE.try_write();
if pc.is_err() {
tokio::time::sleep(std::time::Duration::from_secs(10)).await;
continue;
} else {
break;
}
}
let mut primary_cache = PRIMARY_CACHE.write().await;
let secondary_cache = SECONDARY_CACHE.read().await;
*primary_cache = secondary_cache.clone();
});
});
})
}
PropagationStrategy::OnRead => {
let k1 = k1.clone();
tokio::spawn(async move {
{
let mut secondary_cache = SECONDARY_CACHE.write().await;
secondary_cache.remove(&k1);
}
{
let mut primary_cache = PRIMARY_CACHE.write().await;
primary_cache.remove(&k1);
}
})
}
};
if let Ok(Err(e)) = disk_task.await {
error!("couldn't set key on disk: {:?} ({:?})", e, key);
// undo propagation
prop_task.abort();
{
let mut primary_cache = PRIMARY_CACHE.write().await;
primary_cache.remove(&k1);
}
{
let mut secondary_cache = SECONDARY_CACHE.write().await;
secondary_cache.remove(&k1);
}
return Err(e);
}
let _ = prop_task.await;
Ok(())
}
pub async fn get_key(config: LypheDBConfig, key: &[u8]) -> Result<Option<Vec<u8>>, OperationError> {
let k1 = Arc::new(key.to_vec());
{
let k1 = k1.clone();
tokio::spawn(async move {
let mut access_counter = KEY_ACCESS_COUNTER.write().await;
let counter = access_counter.entry(k1.clone()).or_insert(AtomicU64::new(0));
if counter.load(Ordering::Relaxed) > 10000000 {
return;
}
counter.fetch_add(1, Ordering::SeqCst);
});
}
let disk_task = {
let k1 = k1.clone();
tokio::spawn(async move { get_key_disk(&config, &k1).await })
};
{
// read from cache
let cache = PRIMARY_CACHE.read().await;
if let Some(val) = cache.get(&k1) {
disk_task.abort();
return Ok(Some(val.to_vec()));
}
}
//debug!("cache miss");
if let Ok(result) = disk_task.await {
if let Ok(Some(val)) = &result {
let val = Arc::new(val.to_vec());
tokio::spawn(async move {
{
let mut cache = SECONDARY_CACHE.write().await;
cache.insert(k1.clone(), val.clone());
}
{
let secondary_cache = SECONDARY_CACHE.read().await;
let mut primary_cache = PRIMARY_CACHE.write().await;
*primary_cache = secondary_cache.clone();
}
//debug!("cache insert");
});
}
result
} else {
Err(OperationError::FilesystemPermissionError)
}
}
pub async fn delete_key(config: LypheDBConfig, key: &[u8]) -> Result<(), OperationError> {
let k1 = Arc::new(key.to_vec());
let disk_task = {
let k1 = k1.clone();
tokio::spawn(async move { delete_key_disk(&config, &k1).await })
};
let prop_task = {
let k1 = k1.clone();
tokio::spawn(async move {
{
let mut key_access_counter = KEY_ACCESS_COUNTER.write().await;
key_access_counter.remove(&k1);
}
{
let mut secondary_cache = SECONDARY_CACHE.write().await;
secondary_cache.remove(&k1);
}
let mut primary_cache = PRIMARY_CACHE.write().await;
let secondary_cache = SECONDARY_CACHE.read().await;
*primary_cache = secondary_cache.clone();
})
};
prop_task.await.expect("couldn't delete key");
disk_task.await.expect("couldn't delete key")
}