/* * * Copyright (c) 2020-2022 Project CHIP Authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ use crypto_bigint::Encoding; use crypto_bigint::U384; use elliptic_curve::ops::*; use elliptic_curve::sec1::{FromEncodedPoint, ToEncodedPoint}; use elliptic_curve::Field; use elliptic_curve::PrimeField; use rand_core::CryptoRng; use rand_core::RngCore; use sha2::Digest; use crate::error::Error; use crate::utils::rand::Rand; const MATTER_M_BIN: [u8; 65] = [ 0x04, 0x88, 0x6e, 0x2f, 0x97, 0xac, 0xe4, 0x6e, 0x55, 0xba, 0x9d, 0xd7, 0x24, 0x25, 0x79, 0xf2, 0x99, 0x3b, 0x64, 0xe1, 0x6e, 0xf3, 0xdc, 0xab, 0x95, 0xaf, 0xd4, 0x97, 0x33, 0x3d, 0x8f, 0xa1, 0x2f, 0x5f, 0xf3, 0x55, 0x16, 0x3e, 0x43, 0xce, 0x22, 0x4e, 0x0b, 0x0e, 0x65, 0xff, 0x02, 0xac, 0x8e, 0x5c, 0x7b, 0xe0, 0x94, 0x19, 0xc7, 0x85, 0xe0, 0xca, 0x54, 0x7d, 0x55, 0xa1, 0x2e, 0x2d, 0x20, ]; const MATTER_N_BIN: [u8; 65] = [ 0x04, 0xd8, 0xbb, 0xd6, 0xc6, 0x39, 0xc6, 0x29, 0x37, 0xb0, 0x4d, 0x99, 0x7f, 0x38, 0xc3, 0x77, 0x07, 0x19, 0xc6, 0x29, 0xd7, 0x01, 0x4d, 0x49, 0xa2, 0x4b, 0x4f, 0x98, 0xba, 0xa1, 0x29, 0x2b, 0x49, 0x07, 0xd6, 0x0a, 0xa6, 0xbf, 0xad, 0xe4, 0x50, 0x08, 0xa6, 0x36, 0x33, 0x7f, 0x51, 0x68, 0xc6, 0x4d, 0x9b, 0xd3, 0x60, 0x34, 0x80, 0x8c, 0xd5, 0x64, 0x49, 0x0b, 0x1e, 0x65, 0x6e, 0xdb, 0xe7, ]; #[allow(non_snake_case)] pub struct CryptoSpake2 { xy: p256::Scalar, w0: p256::Scalar, w1: p256::Scalar, M: p256::EncodedPoint, N: p256::EncodedPoint, L: p256::EncodedPoint, pB: p256::EncodedPoint, } impl CryptoSpake2 { #[allow(non_snake_case)] pub fn new() -> Result { let M = p256::EncodedPoint::from_bytes(MATTER_M_BIN).unwrap(); let N = p256::EncodedPoint::from_bytes(MATTER_N_BIN).unwrap(); let L = p256::EncodedPoint::default(); let pB = p256::EncodedPoint::default(); Ok(Self { xy: p256::Scalar::ZERO, w0: p256::Scalar::ZERO, w1: p256::Scalar::ZERO, M, N, L, pB, }) } // Computes w0 from w0s respectively pub fn set_w0_from_w0s(&mut self, w0s: &[u8]) -> Result<(), Error> { // From the Matter Spec, // w0 = w0s mod p // where p is the order of the curve let operand: [u8; 32] = [ 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xbc, 0xe6, 0xfa, 0xad, 0xa7, 0x17, 0x9e, 0x84, 0xf3, 0xb9, 0xca, 0xc2, 0xfc, 0x63, 0x25, 0x51, ]; let mut expanded = [0u8; 384 / 8]; expanded[16..].copy_from_slice(&operand); let big_operand = U384::from_be_slice(&expanded); let mut expanded = [0u8; 384 / 8]; expanded[8..].copy_from_slice(w0s); let big_w0 = U384::from_be_slice(&expanded); let w0_res = big_w0.reduce(&big_operand).unwrap(); let mut w0_out = [0u8; 32]; w0_out.copy_from_slice(&w0_res.to_be_bytes()[16..]); let w0s = p256::Scalar::from_repr( *elliptic_curve::generic_array::GenericArray::from_slice(&w0_out), ) .unwrap(); // Scalar is module the curve's order by definition, no further op needed self.w0 = w0s; Ok(()) } pub fn set_w1_from_w1s(&mut self, w1s: &[u8]) -> Result<(), Error> { // From the Matter Spec, // w1 = w1s mod p // where p is the order of the curve let operand: [u8; 32] = [ 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xbc, 0xe6, 0xfa, 0xad, 0xa7, 0x17, 0x9e, 0x84, 0xf3, 0xb9, 0xca, 0xc2, 0xfc, 0x63, 0x25, 0x51, ]; let mut expanded = [0u8; 384 / 8]; expanded[16..].copy_from_slice(&operand); let big_operand = U384::from_be_slice(&expanded); let mut expanded = [0u8; 384 / 8]; expanded[8..].copy_from_slice(w1s); let big_w1 = U384::from_be_slice(&expanded); let w1_res = big_w1.reduce(&big_operand).unwrap(); let mut w1_out = [0u8; 32]; w1_out.copy_from_slice(&w1_res.to_be_bytes()[16..]); let w1s = p256::Scalar::from_repr( *elliptic_curve::generic_array::GenericArray::from_slice(&w1_out), ) .unwrap(); // Scalar is module the curve's order by definition, no further op needed self.w1 = w1s; Ok(()) } pub fn set_w0(&mut self, w0: &[u8]) -> Result<(), Error> { self.w0 = p256::Scalar::from_repr(*elliptic_curve::generic_array::GenericArray::from_slice(w0)) .unwrap(); Ok(()) } pub fn set_w1(&mut self, w1: &[u8]) -> Result<(), Error> { self.w1 = p256::Scalar::from_repr(*elliptic_curve::generic_array::GenericArray::from_slice(w1)) .unwrap(); Ok(()) } #[allow(non_snake_case)] #[allow(dead_code)] pub fn set_L(&mut self, l: &[u8]) -> Result<(), Error> { self.L = p256::EncodedPoint::from_bytes(l).unwrap(); Ok(()) } #[allow(non_snake_case)] pub fn set_L_from_w1s(&mut self, w1s: &[u8]) -> Result<(), Error> { // From the Matter spec, // L = w1 * P // where P is the generator of the underlying elliptic curve self.set_w1_from_w1s(w1s)?; self.L = (p256::AffinePoint::GENERATOR * self.w1).to_encoded_point(false); Ok(()) } #[allow(non_snake_case)] pub fn get_pB(&mut self, pB: &mut [u8], rand: Rand) -> Result<(), Error> { // From the SPAKE2+ spec (https://datatracker.ietf.org/doc/draft-bar-cfrg-spake2plus/) // for y // - select random y between 0 to p // - Y = y*P + w0*N // - pB = Y let mut rand = RandRngCore(rand); self.xy = p256::Scalar::random(&mut rand); let P = p256::AffinePoint::GENERATOR; let N = p256::AffinePoint::from_encoded_point(&self.N).unwrap(); self.pB = Self::do_add_mul(P, self.xy, N, self.w0)?; let pB_internal = self.pB.as_bytes(); pB.copy_from_slice(pB_internal); Ok(()) } #[allow(non_snake_case)] pub fn get_TT_as_verifier( &mut self, context: &[u8], pA: &[u8], pB: &[u8], out: &mut [u8], ) -> Result<(), Error> { let mut TT = sha2::Sha256::new(); // Context Self::add_to_tt(&mut TT, context)?; // 2 empty identifiers Self::add_to_tt(&mut TT, &[])?; Self::add_to_tt(&mut TT, &[])?; // M Self::add_to_tt(&mut TT, &MATTER_M_BIN)?; // N Self::add_to_tt(&mut TT, &MATTER_N_BIN)?; // X = pA Self::add_to_tt(&mut TT, pA)?; // Y = pB Self::add_to_tt(&mut TT, pB)?; let X = p256::EncodedPoint::from_bytes(pA).unwrap(); let X = p256::AffinePoint::from_encoded_point(&X).unwrap(); let L = p256::AffinePoint::from_encoded_point(&self.L).unwrap(); let M = p256::AffinePoint::from_encoded_point(&self.M).unwrap(); let (Z, V) = Self::get_ZV_as_verifier(self.w0, L, M, X, self.xy)?; // Z Self::add_to_tt(&mut TT, Z.as_bytes())?; // V Self::add_to_tt(&mut TT, V.as_bytes())?; // w0 Self::add_to_tt(&mut TT, self.w0.to_bytes().to_vec().as_ref())?; let h = TT.finalize(); out.copy_from_slice(h.as_slice()); Ok(()) } fn add_to_tt(tt: &mut sha2::Sha256, buf: &[u8]) -> Result<(), Error> { tt.update((buf.len() as u64).to_le_bytes()); if !buf.is_empty() { tt.update(buf); } Ok(()) } #[inline(always)] fn do_add_mul( a: p256::AffinePoint, b: p256::Scalar, c: p256::AffinePoint, d: p256::Scalar, ) -> Result { Ok(((a * b) + (c * d)).to_encoded_point(false)) } #[inline(always)] #[allow(non_snake_case)] #[allow(dead_code)] fn get_ZV_as_prover( w0: p256::Scalar, w1: p256::Scalar, N: p256::AffinePoint, Y: p256::AffinePoint, x: p256::Scalar, ) -> Result<(p256::EncodedPoint, p256::EncodedPoint), Error> { // As per the RFC, the operation here is: // Z = h*x*(Y - w0*N) // V = h*w1*(Y - w0*N) // We will follow the same sequence as in C++ SDK, under the assumption // that the same sequence works for all embedded platforms. So the step // of operations is: // tmp = x*w0 // Z = x*Y + tmp*N (N is inverted to get the 'negative' effect) // Z = h*Z (cofactor Mul) let mut tmp = x * w0; let N_neg = N.neg(); let Z = Self::do_add_mul(Y, x, N_neg, tmp)?; // Cofactor for P256 is 1, so that is a No-Op tmp = w1 * w0; let V = Self::do_add_mul(Y, w1, N_neg, tmp)?; Ok((Z, V)) } #[inline(always)] #[allow(non_snake_case)] #[allow(dead_code)] fn get_ZV_as_verifier( w0: p256::Scalar, L: p256::AffinePoint, M: p256::AffinePoint, X: p256::AffinePoint, y: p256::Scalar, ) -> Result<(p256::EncodedPoint, p256::EncodedPoint), Error> { // As per the RFC, the operation here is: // Z = h*y*(X - w0*M) // V = h*y*L // We will follow the same sequence as in C++ SDK, under the assumption // that the same sequence works for all embedded platforms. So the step // of operations is: // tmp = y*w0 // Z = y*X + tmp*M (M is inverted to get the 'negative' effect) // Z = h*Z (cofactor Mul) let tmp = y * w0; let M_neg = M.neg(); let Z = Self::do_add_mul(X, y, M_neg, tmp)?; // Cofactor for P256 is 1, so that is a No-Op let V = (L * y).to_encoded_point(false); Ok((Z, V)) } } pub struct RandRngCore(pub Rand); impl RngCore for RandRngCore { fn next_u32(&mut self) -> u32 { let mut buf = [0; 4]; self.fill_bytes(&mut buf); u32::from_be_bytes(buf) } fn next_u64(&mut self) -> u64 { let mut buf = [0; 8]; self.fill_bytes(&mut buf); u64::from_be_bytes(buf) } fn fill_bytes(&mut self, dest: &mut [u8]) { (self.0)(dest); } fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand_core::Error> { self.fill_bytes(dest); Ok(()) } } impl CryptoRng for RandRngCore {} #[cfg(test)] mod tests { use super::*; use elliptic_curve::sec1::FromEncodedPoint; use crate::secure_channel::spake2p_test_vectors::test_vectors::*; #[test] #[allow(non_snake_case)] fn test_get_X() { for t in RFC_T { let mut c = CryptoSpake2::new().unwrap(); let x = p256::Scalar::from_repr( *elliptic_curve::generic_array::GenericArray::from_slice(&t.x), ) .unwrap(); c.set_w0(&t.w0).unwrap(); let P = p256::AffinePoint::GENERATOR; let M = p256::AffinePoint::from_encoded_point(&c.M).unwrap(); let r: p256::EncodedPoint = CryptoSpake2::do_add_mul(P, x, M, c.w0).unwrap(); assert_eq!(&t.X, r.as_bytes()); } } #[test] #[allow(non_snake_case)] fn test_get_Y() { for t in RFC_T { let mut c = CryptoSpake2::new().unwrap(); let y = p256::Scalar::from_repr( *elliptic_curve::generic_array::GenericArray::from_slice(&t.y), ) .unwrap(); c.set_w0(&t.w0).unwrap(); let P = p256::AffinePoint::GENERATOR; let N = p256::AffinePoint::from_encoded_point(&c.N).unwrap(); let r = CryptoSpake2::do_add_mul(P, y, N, c.w0).unwrap(); assert_eq!(&t.Y, r.as_bytes()); } } #[test] #[allow(non_snake_case)] fn test_get_ZV_as_prover() { for t in RFC_T { let mut c = CryptoSpake2::new().unwrap(); let x = p256::Scalar::from_repr( *elliptic_curve::generic_array::GenericArray::from_slice(&t.x), ) .unwrap(); c.set_w0(&t.w0).unwrap(); c.set_w1(&t.w1).unwrap(); let Y = p256::EncodedPoint::from_bytes(t.Y).unwrap(); let Y = p256::AffinePoint::from_encoded_point(&Y).unwrap(); let N = p256::AffinePoint::from_encoded_point(&c.N).unwrap(); let (Z, V) = CryptoSpake2::get_ZV_as_prover(c.w0, c.w1, N, Y, x).unwrap(); assert_eq!(&t.Z, Z.as_bytes()); assert_eq!(&t.V, V.as_bytes()); } } #[test] #[allow(non_snake_case)] fn test_get_ZV_as_verifier() { for t in RFC_T { let mut c = CryptoSpake2::new().unwrap(); let y = p256::Scalar::from_repr( *elliptic_curve::generic_array::GenericArray::from_slice(&t.y), ) .unwrap(); c.set_w0(&t.w0).unwrap(); let X = p256::EncodedPoint::from_bytes(t.X).unwrap(); let X = p256::AffinePoint::from_encoded_point(&X).unwrap(); let L = p256::EncodedPoint::from_bytes(t.L).unwrap(); let L = p256::AffinePoint::from_encoded_point(&L).unwrap(); let M = p256::AffinePoint::from_encoded_point(&c.M).unwrap(); let (Z, V) = CryptoSpake2::get_ZV_as_verifier(c.w0, L, M, X, y).unwrap(); assert_eq!(&t.Z, Z.as_bytes()); assert_eq!(&t.V, V.as_bytes()); } } }