rs-matter/matter/src/crypto/crypto_rustcrypto.rs
2023-05-11 09:06:53 +02:00

372 lines
11 KiB
Rust

/*
*
* Copyright (c) 2020-2022 Project CHIP Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
use std::convert::{TryFrom, TryInto};
use aes::Aes128;
use ccm::{
aead::generic_array::GenericArray,
consts::{U13, U16},
Ccm,
};
use elliptic_curve::sec1::{FromEncodedPoint, ToEncodedPoint};
use hmac::Mac;
use log::error;
use p256::{
ecdsa::{Signature, SigningKey, VerifyingKey},
AffinePoint, EncodedPoint, PublicKey, SecretKey,
};
use sha2::Digest;
use x509_cert::{
attr::AttributeType,
der::{asn1::BitString, Any, Encode},
name::RdnSequence,
request::CertReq,
spki::{AlgorithmIdentifier, SubjectPublicKeyInfoOwned},
};
use crate::error::Error;
use super::CryptoKeyPair;
type HmacSha256I = hmac::Hmac<sha2::Sha256>;
type AesCcm = Ccm<Aes128, U16, U13>;
#[derive(Clone)]
pub struct Sha256 {
hasher: sha2::Sha256,
}
impl Sha256 {
pub fn new() -> Result<Self, Error> {
Ok(Self {
hasher: sha2::Sha256::new(),
})
}
pub fn update(&mut self, data: &[u8]) -> Result<(), Error> {
self.hasher.update(data);
Ok(())
}
pub fn finish(self, digest: &mut [u8]) -> Result<(), Error> {
let output = self.hasher.finalize();
digest.copy_from_slice(output.as_slice());
Ok(())
}
}
pub struct HmacSha256 {
inner: HmacSha256I,
}
impl HmacSha256 {
pub fn new(key: &[u8]) -> Result<Self, Error> {
Ok(Self {
inner: HmacSha256I::new_from_slice(key).map_err(|e| {
error!("Error creating HmacSha256 {:?}", e);
Error::TLSStack
})?,
})
}
pub fn update(&mut self, data: &[u8]) -> Result<(), Error> {
self.inner.update(data);
Ok(())
}
pub fn finish(self, out: &mut [u8]) -> Result<(), Error> {
let result = &self.inner.finalize().into_bytes()[..];
out.clone_from_slice(result);
Ok(())
}
}
pub enum KeyType {
Private(SecretKey),
Public(PublicKey),
}
pub struct KeyPair {
key: KeyType,
}
impl KeyPair {
pub fn new() -> Result<Self, Error> {
let mut rng = rand::thread_rng();
let secret_key = SecretKey::random(&mut rng);
Ok(Self {
key: KeyType::Private(secret_key),
})
}
pub fn new_from_components(pub_key: &[u8], priv_key: &[u8]) -> Result<Self, Error> {
let secret_key = SecretKey::from_slice(priv_key).unwrap();
let encoded_point = EncodedPoint::from_bytes(pub_key).unwrap();
let public_key = PublicKey::from_encoded_point(&encoded_point).unwrap();
assert_eq!(public_key, secret_key.public_key());
Ok(Self {
key: KeyType::Private(secret_key),
})
}
pub fn new_from_public(pub_key: &[u8]) -> Result<Self, Error> {
let encoded_point = EncodedPoint::from_bytes(pub_key).unwrap();
Ok(Self {
key: KeyType::Public(PublicKey::from_encoded_point(&encoded_point).unwrap()),
})
}
fn public_key_point(&self) -> AffinePoint {
match &self.key {
KeyType::Private(k) => *(k.public_key().as_affine()),
KeyType::Public(k) => *(k.as_affine()),
}
}
fn private_key(&self) -> Result<&SecretKey, Error> {
match &self.key {
KeyType::Private(key) => Ok(key),
KeyType::Public(_) => Err(Error::Crypto),
}
}
}
impl CryptoKeyPair for KeyPair {
fn get_private_key(&self, priv_key: &mut [u8]) -> Result<usize, Error> {
match &self.key {
KeyType::Private(key) => {
let bytes = key.to_bytes();
let slice = bytes.as_slice();
let len = slice.len();
priv_key[..slice.len()].copy_from_slice(slice);
Ok(len)
}
KeyType::Public(_) => Err(Error::Crypto),
}
}
fn get_csr<'a>(&self, out_csr: &'a mut [u8]) -> Result<&'a [u8], Error> {
use p256::ecdsa::signature::Signer;
let subject = RdnSequence(vec![x509_cert::name::RelativeDistinguishedName(
vec![x509_cert::attr::AttributeTypeAndValue {
// Organization name: http://www.oid-info.com/get/2.5.4.10
oid: x509_cert::attr::AttributeType::new_unwrap("2.5.4.10"),
value: x509_cert::attr::AttributeValue::new(
x509_cert::der::Tag::Utf8String,
"CSR".as_bytes(),
)
.unwrap(),
}]
.try_into()
.unwrap(),
)]);
let mut pubkey = [0; 65];
self.get_public_key(&mut pubkey).unwrap();
let info = x509_cert::request::CertReqInfo {
version: x509_cert::request::Version::V1,
subject,
public_key: SubjectPublicKeyInfoOwned {
algorithm: AlgorithmIdentifier {
// ecPublicKey(1) http://www.oid-info.com/get/1.2.840.10045.2.1
oid: AttributeType::new_unwrap("1.2.840.10045.2.1"),
parameters: Some(
Any::new(
x509_cert::der::Tag::ObjectIdentifier,
// prime256v1 http://www.oid-info.com/get/1.2.840.10045.3.1.7
AttributeType::new_unwrap("1.2.840.10045.3.1.7").as_bytes(),
)
.unwrap(),
),
},
subject_public_key: BitString::from_bytes(&pubkey).unwrap(),
},
attributes: Default::default(),
};
let mut message = vec![];
info.encode(&mut message).unwrap();
// Can't use self.sign_msg as the signature has to be in DER format
let private_key = self.private_key()?;
let signing_key = SigningKey::from(private_key);
let sig: Signature = signing_key.sign(&message);
let to_der = sig.to_der();
let signature = to_der.as_bytes();
let cert = CertReq {
info,
algorithm: AlgorithmIdentifier {
// ecdsa-with-SHA256(2) http://www.oid-info.com/get/1.2.840.10045.4.3.2
oid: AttributeType::new_unwrap("1.2.840.10045.4.3.2"),
parameters: None,
},
signature: BitString::from_bytes(signature).unwrap(),
};
let out = cert.to_der().unwrap();
let a = &mut out_csr[0..out.len()];
a.copy_from_slice(&out);
Ok(a)
}
fn get_public_key(&self, pub_key: &mut [u8]) -> Result<usize, Error> {
let point = self.public_key_point().to_encoded_point(false);
let bytes = point.as_bytes();
let len = bytes.len();
pub_key[..len].copy_from_slice(bytes);
Ok(len)
}
fn derive_secret(self, peer_pub_key: &[u8], secret: &mut [u8]) -> Result<usize, Error> {
let encoded_point = EncodedPoint::from_bytes(peer_pub_key).unwrap();
let peer_pubkey = PublicKey::from_encoded_point(&encoded_point).unwrap();
let private_key = self.private_key()?;
let shared_secret = elliptic_curve::ecdh::diffie_hellman(
private_key.to_nonzero_scalar(),
peer_pubkey.as_affine(),
);
let bytes = shared_secret.raw_secret_bytes();
let bytes = bytes.as_slice();
let len = bytes.len();
assert_eq!(secret.len(), len);
secret.copy_from_slice(bytes);
Ok(len)
}
fn sign_msg(&self, msg: &[u8], signature: &mut [u8]) -> Result<usize, Error> {
use p256::ecdsa::signature::Signer;
if signature.len() < super::EC_SIGNATURE_LEN_BYTES {
return Err(Error::NoSpace);
}
match &self.key {
KeyType::Private(k) => {
let signing_key = SigningKey::from(k);
let sig: Signature = signing_key.sign(msg);
let bytes = sig.to_bytes();
let len = bytes.len();
signature[..len].copy_from_slice(&bytes);
Ok(len)
}
KeyType::Public(_) => todo!(),
}
}
fn verify_msg(&self, msg: &[u8], signature: &[u8]) -> Result<(), Error> {
use p256::ecdsa::signature::Verifier;
let verifying_key = VerifyingKey::from_affine(self.public_key_point()).unwrap();
let signature = Signature::try_from(signature).unwrap();
verifying_key
.verify(msg, &signature)
.map_err(|_| Error::InvalidSignature)?;
Ok(())
}
}
pub fn pbkdf2_hmac(pass: &[u8], iter: usize, salt: &[u8], key: &mut [u8]) -> Result<(), Error> {
pbkdf2::pbkdf2::<hmac::Hmac<sha2::Sha256>>(pass, salt, iter as u32, key).unwrap();
Ok(())
}
pub fn hkdf_sha256(salt: &[u8], ikm: &[u8], info: &[u8], key: &mut [u8]) -> Result<(), Error> {
hkdf::Hkdf::<sha2::Sha256>::new(Some(salt), ikm)
.expand(info, key)
.map_err(|e| {
error!("Error with hkdf_sha256 {:?}", e);
Error::TLSStack
})
}
// TODO: add tests and check against mbedtls and openssl
pub fn encrypt_in_place(
key: &[u8],
nonce: &[u8],
ad: &[u8],
data: &mut [u8],
data_len: usize,
) -> Result<usize, Error> {
use ccm::{AeadInPlace, KeyInit};
let key = GenericArray::from_slice(key);
let nonce = GenericArray::from_slice(nonce);
let cipher = AesCcm::new(key);
let mut buffer = SliceBuffer::new(data, data_len);
cipher.encrypt_in_place(nonce, ad, &mut buffer)?;
Ok(buffer.len())
}
pub fn decrypt_in_place(
key: &[u8],
nonce: &[u8],
ad: &[u8],
data: &mut [u8],
) -> Result<usize, Error> {
use ccm::{AeadInPlace, KeyInit};
let key = GenericArray::from_slice(key);
let nonce = GenericArray::from_slice(nonce);
let cipher = AesCcm::new(key);
let mut buffer = SliceBuffer::new(data, data.len());
cipher.decrypt_in_place(nonce, ad, &mut buffer)?;
Ok(buffer.len())
}
#[derive(Debug)]
struct SliceBuffer<'a> {
slice: &'a mut [u8],
len: usize,
}
impl<'a> SliceBuffer<'a> {
fn new(slice: &'a mut [u8], len: usize) -> Self {
Self { slice, len }
}
fn len(&self) -> usize {
self.len
}
}
impl<'a> AsMut<[u8]> for SliceBuffer<'a> {
fn as_mut(&mut self) -> &mut [u8] {
&mut self.slice[..self.len]
}
}
impl<'a> AsRef<[u8]> for SliceBuffer<'a> {
fn as_ref(&self) -> &[u8] {
&self.slice[..self.len]
}
}
impl<'a> ccm::aead::Buffer for SliceBuffer<'a> {
fn extend_from_slice(&mut self, other: &[u8]) -> ccm::aead::Result<()> {
self.slice[self.len..][..other.len()].copy_from_slice(other);
self.len += other.len();
Ok(())
}
fn truncate(&mut self, len: usize) {
self.len = len;
}
}