420 lines
14 KiB
Rust
420 lines
14 KiB
Rust
/*
|
|
*
|
|
* Copyright (c) 2020-2022 Project CHIP Authors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
use crypto_bigint::Encoding;
|
|
use crypto_bigint::U384;
|
|
use elliptic_curve::ops::*;
|
|
use elliptic_curve::sec1::{FromEncodedPoint, ToEncodedPoint};
|
|
use elliptic_curve::Field;
|
|
use elliptic_curve::PrimeField;
|
|
use rand_core::CryptoRng;
|
|
use rand_core::RngCore;
|
|
use sha2::Digest;
|
|
|
|
use crate::error::Error;
|
|
use crate::utils::rand::Rand;
|
|
|
|
const MATTER_M_BIN: [u8; 65] = [
|
|
0x04, 0x88, 0x6e, 0x2f, 0x97, 0xac, 0xe4, 0x6e, 0x55, 0xba, 0x9d, 0xd7, 0x24, 0x25, 0x79, 0xf2,
|
|
0x99, 0x3b, 0x64, 0xe1, 0x6e, 0xf3, 0xdc, 0xab, 0x95, 0xaf, 0xd4, 0x97, 0x33, 0x3d, 0x8f, 0xa1,
|
|
0x2f, 0x5f, 0xf3, 0x55, 0x16, 0x3e, 0x43, 0xce, 0x22, 0x4e, 0x0b, 0x0e, 0x65, 0xff, 0x02, 0xac,
|
|
0x8e, 0x5c, 0x7b, 0xe0, 0x94, 0x19, 0xc7, 0x85, 0xe0, 0xca, 0x54, 0x7d, 0x55, 0xa1, 0x2e, 0x2d,
|
|
0x20,
|
|
];
|
|
const MATTER_N_BIN: [u8; 65] = [
|
|
0x04, 0xd8, 0xbb, 0xd6, 0xc6, 0x39, 0xc6, 0x29, 0x37, 0xb0, 0x4d, 0x99, 0x7f, 0x38, 0xc3, 0x77,
|
|
0x07, 0x19, 0xc6, 0x29, 0xd7, 0x01, 0x4d, 0x49, 0xa2, 0x4b, 0x4f, 0x98, 0xba, 0xa1, 0x29, 0x2b,
|
|
0x49, 0x07, 0xd6, 0x0a, 0xa6, 0xbf, 0xad, 0xe4, 0x50, 0x08, 0xa6, 0x36, 0x33, 0x7f, 0x51, 0x68,
|
|
0xc6, 0x4d, 0x9b, 0xd3, 0x60, 0x34, 0x80, 0x8c, 0xd5, 0x64, 0x49, 0x0b, 0x1e, 0x65, 0x6e, 0xdb,
|
|
0xe7,
|
|
];
|
|
|
|
#[allow(non_snake_case)]
|
|
|
|
pub struct CryptoSpake2 {
|
|
xy: p256::Scalar,
|
|
w0: p256::Scalar,
|
|
w1: p256::Scalar,
|
|
M: p256::EncodedPoint,
|
|
N: p256::EncodedPoint,
|
|
L: p256::EncodedPoint,
|
|
pB: p256::EncodedPoint,
|
|
}
|
|
|
|
impl CryptoSpake2 {
|
|
#[allow(non_snake_case)]
|
|
pub fn new() -> Result<Self, Error> {
|
|
let M = p256::EncodedPoint::from_bytes(MATTER_M_BIN).unwrap();
|
|
let N = p256::EncodedPoint::from_bytes(MATTER_N_BIN).unwrap();
|
|
let L = p256::EncodedPoint::default();
|
|
let pB = p256::EncodedPoint::default();
|
|
|
|
Ok(Self {
|
|
xy: p256::Scalar::ZERO,
|
|
w0: p256::Scalar::ZERO,
|
|
w1: p256::Scalar::ZERO,
|
|
M,
|
|
N,
|
|
L,
|
|
pB,
|
|
})
|
|
}
|
|
|
|
// Computes w0 from w0s respectively
|
|
pub fn set_w0_from_w0s(&mut self, w0s: &[u8]) -> Result<(), Error> {
|
|
// From the Matter Spec,
|
|
// w0 = w0s mod p
|
|
// where p is the order of the curve
|
|
let operand: [u8; 32] = [
|
|
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xbc, 0xe6, 0xfa, 0xad, 0xa7, 0x17, 0x9e, 0x84, 0xf3, 0xb9, 0xca, 0xc2,
|
|
0xfc, 0x63, 0x25, 0x51,
|
|
];
|
|
let mut expanded = [0u8; 384 / 8];
|
|
expanded[16..].copy_from_slice(&operand);
|
|
let big_operand = U384::from_be_slice(&expanded);
|
|
let mut expanded = [0u8; 384 / 8];
|
|
expanded[8..].copy_from_slice(w0s);
|
|
let big_w0 = U384::from_be_slice(&expanded);
|
|
let w0_res = big_w0.reduce(&big_operand).unwrap();
|
|
let mut w0_out = [0u8; 32];
|
|
w0_out.copy_from_slice(&w0_res.to_be_bytes()[16..]);
|
|
|
|
let w0s = p256::Scalar::from_repr(
|
|
*elliptic_curve::generic_array::GenericArray::from_slice(&w0_out),
|
|
)
|
|
.unwrap();
|
|
// Scalar is module the curve's order by definition, no further op needed
|
|
self.w0 = w0s;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
pub fn set_w1_from_w1s(&mut self, w1s: &[u8]) -> Result<(), Error> {
|
|
// From the Matter Spec,
|
|
// w1 = w1s mod p
|
|
// where p is the order of the curve
|
|
let operand: [u8; 32] = [
|
|
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xbc, 0xe6, 0xfa, 0xad, 0xa7, 0x17, 0x9e, 0x84, 0xf3, 0xb9, 0xca, 0xc2,
|
|
0xfc, 0x63, 0x25, 0x51,
|
|
];
|
|
let mut expanded = [0u8; 384 / 8];
|
|
expanded[16..].copy_from_slice(&operand);
|
|
let big_operand = U384::from_be_slice(&expanded);
|
|
let mut expanded = [0u8; 384 / 8];
|
|
expanded[8..].copy_from_slice(w1s);
|
|
let big_w1 = U384::from_be_slice(&expanded);
|
|
let w1_res = big_w1.reduce(&big_operand).unwrap();
|
|
let mut w1_out = [0u8; 32];
|
|
w1_out.copy_from_slice(&w1_res.to_be_bytes()[16..]);
|
|
|
|
let w1s = p256::Scalar::from_repr(
|
|
*elliptic_curve::generic_array::GenericArray::from_slice(&w1_out),
|
|
)
|
|
.unwrap();
|
|
// Scalar is module the curve's order by definition, no further op needed
|
|
self.w1 = w1s;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
pub fn set_w0(&mut self, w0: &[u8]) -> Result<(), Error> {
|
|
self.w0 =
|
|
p256::Scalar::from_repr(*elliptic_curve::generic_array::GenericArray::from_slice(w0))
|
|
.unwrap();
|
|
Ok(())
|
|
}
|
|
|
|
pub fn set_w1(&mut self, w1: &[u8]) -> Result<(), Error> {
|
|
self.w1 =
|
|
p256::Scalar::from_repr(*elliptic_curve::generic_array::GenericArray::from_slice(w1))
|
|
.unwrap();
|
|
Ok(())
|
|
}
|
|
|
|
#[allow(non_snake_case)]
|
|
#[allow(dead_code)]
|
|
pub fn set_L(&mut self, l: &[u8]) -> Result<(), Error> {
|
|
self.L = p256::EncodedPoint::from_bytes(l).unwrap();
|
|
Ok(())
|
|
}
|
|
|
|
#[allow(non_snake_case)]
|
|
pub fn set_L_from_w1s(&mut self, w1s: &[u8]) -> Result<(), Error> {
|
|
// From the Matter spec,
|
|
// L = w1 * P
|
|
// where P is the generator of the underlying elliptic curve
|
|
self.set_w1_from_w1s(w1s)?;
|
|
self.L = (p256::AffinePoint::GENERATOR * self.w1).to_encoded_point(false);
|
|
Ok(())
|
|
}
|
|
|
|
#[allow(non_snake_case)]
|
|
pub fn get_pB(&mut self, pB: &mut [u8], rand: Rand) -> Result<(), Error> {
|
|
// From the SPAKE2+ spec (https://datatracker.ietf.org/doc/draft-bar-cfrg-spake2plus/)
|
|
// for y
|
|
// - select random y between 0 to p
|
|
// - Y = y*P + w0*N
|
|
// - pB = Y
|
|
let mut rand = RandRngCore(rand);
|
|
self.xy = p256::Scalar::random(&mut rand);
|
|
|
|
let P = p256::AffinePoint::GENERATOR;
|
|
let N = p256::AffinePoint::from_encoded_point(&self.N).unwrap();
|
|
self.pB = Self::do_add_mul(P, self.xy, N, self.w0)?;
|
|
let pB_internal = self.pB.as_bytes();
|
|
pB.copy_from_slice(pB_internal);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[allow(non_snake_case)]
|
|
pub fn get_TT_as_verifier(
|
|
&mut self,
|
|
context: &[u8],
|
|
pA: &[u8],
|
|
pB: &[u8],
|
|
out: &mut [u8],
|
|
) -> Result<(), Error> {
|
|
let mut TT = sha2::Sha256::new();
|
|
// Context
|
|
Self::add_to_tt(&mut TT, context)?;
|
|
// 2 empty identifiers
|
|
Self::add_to_tt(&mut TT, &[])?;
|
|
Self::add_to_tt(&mut TT, &[])?;
|
|
// M
|
|
Self::add_to_tt(&mut TT, &MATTER_M_BIN)?;
|
|
// N
|
|
Self::add_to_tt(&mut TT, &MATTER_N_BIN)?;
|
|
// X = pA
|
|
Self::add_to_tt(&mut TT, pA)?;
|
|
// Y = pB
|
|
Self::add_to_tt(&mut TT, pB)?;
|
|
|
|
let X = p256::EncodedPoint::from_bytes(pA).unwrap();
|
|
let X = p256::AffinePoint::from_encoded_point(&X).unwrap();
|
|
let L = p256::AffinePoint::from_encoded_point(&self.L).unwrap();
|
|
let M = p256::AffinePoint::from_encoded_point(&self.M).unwrap();
|
|
let (Z, V) = Self::get_ZV_as_verifier(self.w0, L, M, X, self.xy)?;
|
|
|
|
// Z
|
|
Self::add_to_tt(&mut TT, Z.as_bytes())?;
|
|
// V
|
|
Self::add_to_tt(&mut TT, V.as_bytes())?;
|
|
// w0
|
|
Self::add_to_tt(&mut TT, self.w0.to_bytes().to_vec().as_ref())?;
|
|
|
|
let h = TT.finalize();
|
|
out.copy_from_slice(h.as_slice());
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn add_to_tt(tt: &mut sha2::Sha256, buf: &[u8]) -> Result<(), Error> {
|
|
tt.update((buf.len() as u64).to_le_bytes());
|
|
if !buf.is_empty() {
|
|
tt.update(buf);
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn do_add_mul(
|
|
a: p256::AffinePoint,
|
|
b: p256::Scalar,
|
|
c: p256::AffinePoint,
|
|
d: p256::Scalar,
|
|
) -> Result<p256::EncodedPoint, Error> {
|
|
Ok(((a * b) + (c * d)).to_encoded_point(false))
|
|
}
|
|
|
|
#[inline(always)]
|
|
#[allow(non_snake_case)]
|
|
#[allow(dead_code)]
|
|
fn get_ZV_as_prover(
|
|
w0: p256::Scalar,
|
|
w1: p256::Scalar,
|
|
N: p256::AffinePoint,
|
|
Y: p256::AffinePoint,
|
|
x: p256::Scalar,
|
|
) -> Result<(p256::EncodedPoint, p256::EncodedPoint), Error> {
|
|
// As per the RFC, the operation here is:
|
|
// Z = h*x*(Y - w0*N)
|
|
// V = h*w1*(Y - w0*N)
|
|
|
|
// We will follow the same sequence as in C++ SDK, under the assumption
|
|
// that the same sequence works for all embedded platforms. So the step
|
|
// of operations is:
|
|
// tmp = x*w0
|
|
// Z = x*Y + tmp*N (N is inverted to get the 'negative' effect)
|
|
// Z = h*Z (cofactor Mul)
|
|
|
|
let mut tmp = x * w0;
|
|
let N_neg = N.neg();
|
|
let Z = Self::do_add_mul(Y, x, N_neg, tmp)?;
|
|
// Cofactor for P256 is 1, so that is a No-Op
|
|
|
|
tmp = w1 * w0;
|
|
let V = Self::do_add_mul(Y, w1, N_neg, tmp)?;
|
|
Ok((Z, V))
|
|
}
|
|
|
|
#[inline(always)]
|
|
#[allow(non_snake_case)]
|
|
#[allow(dead_code)]
|
|
fn get_ZV_as_verifier(
|
|
w0: p256::Scalar,
|
|
L: p256::AffinePoint,
|
|
M: p256::AffinePoint,
|
|
X: p256::AffinePoint,
|
|
y: p256::Scalar,
|
|
) -> Result<(p256::EncodedPoint, p256::EncodedPoint), Error> {
|
|
// As per the RFC, the operation here is:
|
|
// Z = h*y*(X - w0*M)
|
|
// V = h*y*L
|
|
|
|
// We will follow the same sequence as in C++ SDK, under the assumption
|
|
// that the same sequence works for all embedded platforms. So the step
|
|
// of operations is:
|
|
// tmp = y*w0
|
|
// Z = y*X + tmp*M (M is inverted to get the 'negative' effect)
|
|
// Z = h*Z (cofactor Mul)
|
|
|
|
let tmp = y * w0;
|
|
let M_neg = M.neg();
|
|
let Z = Self::do_add_mul(X, y, M_neg, tmp)?;
|
|
// Cofactor for P256 is 1, so that is a No-Op
|
|
let V = (L * y).to_encoded_point(false);
|
|
Ok((Z, V))
|
|
}
|
|
}
|
|
|
|
pub struct RandRngCore(pub Rand);
|
|
|
|
impl RngCore for RandRngCore {
|
|
fn next_u32(&mut self) -> u32 {
|
|
let mut buf = [0; 4];
|
|
self.fill_bytes(&mut buf);
|
|
|
|
u32::from_be_bytes(buf)
|
|
}
|
|
|
|
fn next_u64(&mut self) -> u64 {
|
|
let mut buf = [0; 8];
|
|
self.fill_bytes(&mut buf);
|
|
|
|
u64::from_be_bytes(buf)
|
|
}
|
|
|
|
fn fill_bytes(&mut self, dest: &mut [u8]) {
|
|
(self.0)(dest);
|
|
}
|
|
|
|
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand_core::Error> {
|
|
self.fill_bytes(dest);
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl CryptoRng for RandRngCore {}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
|
|
use elliptic_curve::sec1::FromEncodedPoint;
|
|
|
|
use crate::secure_channel::spake2p_test_vectors::test_vectors::*;
|
|
|
|
#[test]
|
|
#[allow(non_snake_case)]
|
|
fn test_get_X() {
|
|
for t in RFC_T {
|
|
let mut c = CryptoSpake2::new().unwrap();
|
|
let x = p256::Scalar::from_repr(
|
|
*elliptic_curve::generic_array::GenericArray::from_slice(&t.x),
|
|
)
|
|
.unwrap();
|
|
c.set_w0(&t.w0).unwrap();
|
|
let P = p256::AffinePoint::GENERATOR;
|
|
let M = p256::AffinePoint::from_encoded_point(&c.M).unwrap();
|
|
let r: p256::EncodedPoint = CryptoSpake2::do_add_mul(P, x, M, c.w0).unwrap();
|
|
assert_eq!(&t.X, r.as_bytes());
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
#[allow(non_snake_case)]
|
|
fn test_get_Y() {
|
|
for t in RFC_T {
|
|
let mut c = CryptoSpake2::new().unwrap();
|
|
let y = p256::Scalar::from_repr(
|
|
*elliptic_curve::generic_array::GenericArray::from_slice(&t.y),
|
|
)
|
|
.unwrap();
|
|
c.set_w0(&t.w0).unwrap();
|
|
let P = p256::AffinePoint::GENERATOR;
|
|
let N = p256::AffinePoint::from_encoded_point(&c.N).unwrap();
|
|
let r = CryptoSpake2::do_add_mul(P, y, N, c.w0).unwrap();
|
|
assert_eq!(&t.Y, r.as_bytes());
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
#[allow(non_snake_case)]
|
|
fn test_get_ZV_as_prover() {
|
|
for t in RFC_T {
|
|
let mut c = CryptoSpake2::new().unwrap();
|
|
let x = p256::Scalar::from_repr(
|
|
*elliptic_curve::generic_array::GenericArray::from_slice(&t.x),
|
|
)
|
|
.unwrap();
|
|
c.set_w0(&t.w0).unwrap();
|
|
c.set_w1(&t.w1).unwrap();
|
|
let Y = p256::EncodedPoint::from_bytes(t.Y).unwrap();
|
|
let Y = p256::AffinePoint::from_encoded_point(&Y).unwrap();
|
|
let N = p256::AffinePoint::from_encoded_point(&c.N).unwrap();
|
|
let (Z, V) = CryptoSpake2::get_ZV_as_prover(c.w0, c.w1, N, Y, x).unwrap();
|
|
|
|
assert_eq!(&t.Z, Z.as_bytes());
|
|
assert_eq!(&t.V, V.as_bytes());
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
#[allow(non_snake_case)]
|
|
fn test_get_ZV_as_verifier() {
|
|
for t in RFC_T {
|
|
let mut c = CryptoSpake2::new().unwrap();
|
|
let y = p256::Scalar::from_repr(
|
|
*elliptic_curve::generic_array::GenericArray::from_slice(&t.y),
|
|
)
|
|
.unwrap();
|
|
c.set_w0(&t.w0).unwrap();
|
|
let X = p256::EncodedPoint::from_bytes(t.X).unwrap();
|
|
let X = p256::AffinePoint::from_encoded_point(&X).unwrap();
|
|
let L = p256::EncodedPoint::from_bytes(t.L).unwrap();
|
|
let L = p256::AffinePoint::from_encoded_point(&L).unwrap();
|
|
let M = p256::AffinePoint::from_encoded_point(&c.M).unwrap();
|
|
let (Z, V) = CryptoSpake2::get_ZV_as_verifier(c.w0, L, M, X, y).unwrap();
|
|
|
|
assert_eq!(&t.Z, Z.as_bytes());
|
|
assert_eq!(&t.V, V.as_bytes());
|
|
}
|
|
}
|
|
}
|